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Abstract In previous works, the connectivity of nodes in social networks such as
the Internet has been shown to follow a scale-free distribution in which there is
a larger probability of nodes with lower connectivity and a smaller probability of
nodes with higher connectivity. This network structure facilitates communication
but also aids in the propagation of viruses. In this work, solutions have been
obtained for a dynamical mean-field equation that characterizes virus infections
and growth in scale-free networks. In contrast to previous findings, a threshold
condition has been found for the persistence of computer infections. The effect of
connectivity-dependent growth and recovery rates is also reported. It has been
found that it is possible to reduce the deleterious effects of viruses by
preferentially discouraging growth and enhancing recovery in high-connectivity
nodes. Significantly, a security ‘‘figure-of-merit’’ has been derived that will allow
network administrators to sample their environment in real time and measure the
risk relative to E-mail-borne threats.
ª 2005 Published by Elsevier Ltd.
Introduction and background

Simplifiedmathematical descriptions of the dynam-
ic behavior of viruses in biological and computer
systems involve the well-known logistic equation.
This is a first order non-linear differential equation
of the form

da=dtZaað1� aÞ ð1Þ
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where a represents the fraction of infected nodes,
t is time, and a is the rate at which nodes become
infected. Re-infection of disinfected and therefore
susceptible nodes is not considered in this simpli-
fied model of behavior. A solution to Eq. (1) is
given by

aZ
eat

1Ceat
ð2Þ

for the case where aZ 1/2 at tZ 0.
A plot of Eq. (2) yields the familiar sigmoid

where the initial fraction of infected nodes is
small. Some time later, the fraction of infected
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nodes rises precipitously. For large time t, a ap-
proaches unity, as all nodes have either been
infected and died or have developed an immunity
from infection. For biological systems the logistic
equation describes a population where a fraction
of the community has either died or developed
antibodies to the infection. The analogue of de-
veloping antibodies in a computer network is
characterized by the remediation and patching of
nodes. It is clear from Eq. (3) that the dynamic
behavior of an infection is solely dependent on the
infection rate a.

However, this model assumes equal probabili-
ties for node linking and a constant network size.
In other words, assumptions inherent in Eq. (1) are
that the probability of infecting a particular node
is independent of the particular node itself, and
that the network adds no new nodes with time.
E-mail-type networks fall into a category known as
social networks that exhibit both growth and
preferential attachment (Barabasi and Albert,
1999).

With respect to growth, standard network mod-
els often assume there are a fixed number of nodes
that are either randomly connected (Erdos and
Renyi) or exhibit small world behavior and cluster-
ing (Watts and Strogatz), but where the total
number of nodes never changes. Networks such
as the Internet are continuing to add nodes,
thereby increasing the number of vertices with
time.

Some networks also display preferential attach-
ment, where the probability of connecting to
a new node is greater for nodes that already
exhibit a higher number of connections. This
characteristic is an important feature of the
Internet, and accounts for many of the important
behavioral phenomena associated with the propa-
gation of viruses. Moreover, the combination of
preferential attachment and the continuous addi-
tion of vertices leads to a model of network growth
that is scale invariant (Barabasi and Albert, 1999).

In contrast with other network models, the
topology of social networks such as the Internet
can be characterized by a scale-free distribution of
network nodes. In these types of networks, the
probability of connectivity P(k) for any node of
connectivity k, scales as a power law:

PðkÞZk�g ð3Þ

for m! k! kmax.
Eq. (3) suggests that for scale-free networks,

a large number of its nodes have a small number
of links to other nodes, and a small number is
highly-linked. Moreover, this inverse power law
distribution is thought to have important security
implications, where the highly-connected nodes
play a critical role in facilitating virus propagation
(Ebel et al., 2002). Therefore, smaller values for g
imply a greater number of highly-connected nodes
in the network. Typical values have been calculated
to be in the 2e4 range, and one study revealed
a measured value of 1.81 (Ebel et al., 2002).

In an important work published in 2001, an
analysis of the propagation of computer viruses
was performed using a ‘‘mean field’’ analysis
(Pastor-Satorras and Vespignani, 2001). In this
paper, data on viral infections on the Internet
was analyzed, and a mean field equation depicting
the time evolution of the probability of viral
infection as a function of the node’s connectivity
was introduced. Mean field approximations repre-
sent a form of averaging over many elements of
a system, and are often used in physics and phase
transition-type calculations.

Pastor-Satorras and Vespignani (2001) used nu-
merical simulation to study the time behavior and
steady state of virus propagation, as well as to
obtain analytic expressions for the steady state
virus-spreading condition. The time rate of change
of the probability rk of a node with connectivity k
infected with a virus was found to equal the decay
in the probability of infection resulting from
applying network remediation (e.g., patching in-
fected nodes) plus a term proportional to the
probability of linking to an already-infected node.
In the steady state, vrk/vtZ 0.

The authors also relied on a widely-cited result
by Albert et al. (2000) that specified a value for the
exponent g in Eq. (3). Importantly, a narrow range
of nodes relative to their connectivity was exam-
ined in this work. The values of connectivity
examined ranged from nodes of low connectivity
where the virus decay rate exceeded the growth
rate and included nodes of higher connectivity
where the virus growth rate exceeded the decay
rate. This analysis yielded an expression for the
steady-state probability Qss that a given node in
a scale-free network pointed to an infected node.
This important expression was given by

QssZ
exp

lm

�1=lm

ð4Þ

� d denotes the remediation rate of infected
nodes (i.e., the rate of nodes being restored
following infection).

� y is the infection rate of an uninfected node if
it is connected to an infected node.

� k is the number of connections or links of
a node.
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� m is the minimum number of nodes available
for connection.

� lZ y/d.

Eq. (4) implies that zero values of Qss are not
permitted for any finite l. This suggests that
a computer virus can pervade a network with finite
prevalence in sufficiently large networks; once
established, viruses will grow or decay but not
remain static under steady-state conditions. The
authors also concluded that these results implied
scale-free networks of sufficient size required no
threshold for epidemic spreading. These results
dramatically departed from previously held no-
tions on infections since it was believed that
viruses died out (i.e., the prevalence is zero)
below some threshold infection rate. The expla-
nation given for this departure was the increased
statistical likelihood of encountering nodes with
higher connectivity in scale-free networks.

In the data analysis portion of Pastor-Satorras
and Vespignani (2001), the surviving probabilities
of 814 different viruses in the 50-month-period
between February 1996 and March 2000 were
examined. It was found that file viruses (i.e., those
that infect a computer when it runs an infected
application) exhibited an exponential decay in
time with a characteristic time constant of seven
months. Boot viruses (i.e., those that spread by
infected applications but copy themselves on to
the boot sector of the hard drive) and macro
viruses (i.e., those that infect data files and are
therefore platform-independent), also exhibit ex-
ponential decays but with a characteristic time
constant of 14 months. Some of the data examined
also suggested that there might be a low level
persistence in the viral infection. These findings
tended to support the analytical conclusions as
expressed in Eq. (4).

Network viruses in steady-state
conditions

Further examination of the steady state condition
yields interesting properties of virus propagation in
scale-free networks. Applying Eq. (4) to the afore-
mentioned range of steady-state values of connec-
tivity yields the condition

1� expð1=lmÞ � ðkmax=mÞ ð5Þ

kmaxZ N�1Z the maximum number of nodes that
a single node can connect to, andmZ theminimum
number of nodes available for connection.
Eq. (5) sets an upper limit on the magnitude of
the remediation-to-infection rate (i.e., d/yZ
1/l). In fact, Eq. (5) defines the condition
that separates a persistent infectious state from
a non-persistent one. We also see that the larger
the kmax, the easier it is to satisfy Eq. (5).

By applying Eq. (5) to the mean field equation
for the steady-state condition (i.e., when vrk/
vtZ 0) and evaluating this expression under vari-
ous network connectivity conditions, we can fur-
ther characterize the probability that a node will
be infected in the steady state, rk

ss.
Such an analysis reveals that when there is low

node connectivity, i.e., (k/m)exp(�1/lm)� 1,

rssk Zðk=mÞexpð�1=lmÞ ð6Þ

When there is high connectivity, i.e. (k/m)exp(�1/
lm)[ 1,

rssk w1 ð7Þ

Therefore, when the steady-state condition ap-
plies, the probability that a node with small
connectivity is infected can be much less than 1
(increasing linearly with connectivity k), and the
probability that a node with large connectivity
becomes infected is almost 1.

As noted previously, Pastor-Satorras and Ves-
pignani (2001) assumed values of node connectiv-
ity such that the decay rate exceeds the growth
rate for nodes of low connectivity and where the
growth rate exceeds the decay rate for nodes of
high connectivity. However, there are two other
important ranges of network connectivity condi-
tions to consider.

The first case is when the infection growth rate
y greatly exceeds the decay rate d for all node
connectivity values k. This situation exists in
a network that has little anti-viral prevention and
little remediation software. By applying a steady
state condition to the mean field equation it
becomes apparent that a persistent infection state
is possible in which the probability that a given link
points to an infected node is close to unity for all
connectivity values k.

In the second case, the infection decay (i.e.,
remediation) rate greatly exceeds the growth rate
for all k. This can occur in networks for which
attention is paid to maintaining viral prevention
software, rapid incorporation of patches, and
diligence in implementing remediation measures.
In this case we find no non-zero steady state exists
when exp(1/lm)O kmax/m.
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To recap, we have shown that a network infec-
tion condition can exist under two conditions in
the steady state:

1. When infection growth is larger than decay for
large connectivity k and infection growth is
smaller than infection decay for small connec-
tivity.

2. When infection growth is larger than infection
decay for all k.

No steady state condition is possible when the
decay rate is greater than the infection rate for all
connectivity k.

This shows that a threshold condition does
indeed exist for network infection persistence in
the steady state, even for a scale-free network.
This condition depends on the size of the network
through the maximum number of nodes available
for connection kmax, and is given by

lZy=dOlthreshold ð8Þ

where lthresholdZ [m ln(kmax/m)]�1.
Eq. (8) implies that the larger the network, the

lower the threshold condition for infection persis-
tence and hence a greater vulnerability to in-
fection. As indicated above, kmax can be set to
N�1, where N is the number of nodes in the
network (a node cannot connect to itself, hence
the N�1 term). We also note that the logarithmic
condition for the threshold condition only applies
for the scaling exponent gZ 3 (considered to be
a typical value for Internet/E-mail networks).

Fig. 1 below shows the variation of lthreshold with
network size for gZ 3 (the value used in Barabasi
andAlbert, 1999andPastor-Satorras andVespignani,
2001). Infection persistence occurs when lO
lthreshold. If l! lthreshold, the decay rate exceeds
the growth rate and the infection dies out.

The three possible behaviors of viral infections
in the network are shown in Fig. 2 below. In this
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Figure 1 Variation of threshold with network size.
figure, the lthreshold curve of Fig. 1 is reproduced,
along with the curve for condition 1 (lZ 1/mZ 1/
3) discussed previously, where the virus growth
rate exceeds the decay rate for all nodes. Above
the lZ 1/3 curve the probabilities of persistence
approach unity. Between the two curves in Fig. 2
the virus persists but with smaller probability. The
persistence probabilities decrease as the ordinate
position is decreased, and they become vanishingly
small as the lower curve is approached. Below the
lower curve, there is no persistence in the virus
infection.

General network infection conditions

In the previous section we examined virus infec-
tions only for the steady-state network condition.
As we noted earlier, in the steady-state the time
rate of change of probability of linking to an
infected node is zero. A more general situation
relative to virus propagation can be obtained by
considering the time evolution of infections lead-
ing up to a steady-state condition. We wish to
explore the general time-dependence of infection
spreading, and what happens near the threshold of
viral persistence.

We assume that a virus is introduced into the
network at nodes that do not have a specified
connectivity value. Based on the discussion in
Sections Introduction and background and Network
viruses in steady-state conditions, it might be
expected that the most damage would occur if
the virus is introduced into the network via high
connectivity nodes. However, we address the more
general case in which the connectivity of the
initially infected nodes is arbitrary.

At time tZ 0 for a small group of initially
infected nodes, the mean field equation for the
time rate of change of the probability of linking to
an infected node simplifies to

vrk=vtw� drk ð9Þ

Direct integration of Eq. (9) yields

rkðtÞZexpð�dtÞ ð10Þ

Therefore the infection probability from the small
group of initially infected nodes drops off rapidly
in time, with a time scale determined by the
recovery rate d. The mean field equation de-
scribing the probability of linking to an infected
node now derives from two parts: (1) nodes not
initially infected and (2) nodes initially infected.
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Figure 2 Boundaries between three regions of virus behavior.
The probability of linking to an infected node
via a node not initially infected can be obtained by
taking the first moment of the modified mean field
equation. This yields an expression in terms of the
first and second moments of the scale-free distri-
bution P(k).

Recall that the first and second moments of P(k)
are defined as !kP(k)dkZ D1 and !k2P(k)dkZ D2,
respectively.

Using this method, a condition for the growth of
network infections to a persistent state has been
found to exist when (y/d)(D2/D1)O 1. Conversely,
the condition for non-persistence of infection can
be shown to be (y/d) (D2/D1)! 1.

The probability of infection by nodes that were
initially infected continues to grow until it reaches
the steady state or persistent value as specified in
the previous section. Specifically, when the scaling
exponent g is 3, the condition for persistent
infectious growth becomes (kmax/m)O exp(1/lm)
as before.

For nodes not initially infected, a similar anal-
ysis reveals that when (y/d)(D2/D1)! 1, the prob-
ability of infection grows to a maximum value and
then decays to zero. The probability of linking to
an infected node that was not initially infected is
directly proportional to its connectivity k.

We can also estimate the time required to
achieve a persistent viral state by setting the
general probability of linking to an infected node
equal to the probability in the steady-state. It has
been found that for gZ 3, the time to achieve
non-zero persistence can be made quite long if the
values for kmax, l and m are kept small.

Summary of results

It has been found that a threshold exists for the
persistence of an infection in scale-free networks
such as the Internet. Figs. 1 and 2 plot threshold
conditions of kmax (network size) versus lZ y/d,
the ratio of intrinsic growth to intrinsic decay rates
for a scaling exponent gZ 3.
In particular, Fig. 2 shows three regions sepa-
rated by two curves: below the lowest curve no
persistent infection exists. Between the two
curves, infections persist, but at a low level when
near the lower curve. Above the upper curve, the
infection probability of each node is close to unity.

When nodes in a narrow range of connectivity
are initially infected, there will be no persistent
viral infection in the network if 1O lm ln(kmax/m)
for gZ 3. Since lZ y/d, this suggests increasing
the intrinsic decay rate and decreasing the in-
trinsic growth rate. In addition, the no-persistence
condition will be easier to satisfy with smaller
networks, since kmax in the logarithm term is given
by N�1, where N is the number of nodes in the
network.

The time for the infection probability to reach
a maximum in those nodes not initially infected is
inversely proportional to ln(kmax/m). This suggests
that a larger network will also result in a shorter
incubation time for a virus. Once infected, the
decay time can become very long as lm ln(kmax/m)
approaches unity from below. This again implies
increasing the intrinsic decay rate and decreasing
the growth rate of a node. Smaller networks have
shorter decay times.

Our results show that despite the fact that the
probability of a link being connected to an in-
fected node that was initially uninfected increases
with network size, the individual node infection
probabilities decrease with larger networks. This
implies that an increase in network size is favor-
able relative to the chances of infecting any
specific node.

We therefore see that increased network size
has competing effects on security. On one hand,
the no-persistence condition is easier to satisfy
with smaller networks, as well as producing shorter
infection decay times. On the other hand, the
probability of a particular node being infected
increases with network size.

The infection probabilities are proportional to
the node connections that have been previously
infected. This would suggest that the most damage
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Figure 3 Threshold lg vs kmax for various gZ 3, 3.5 and 4 [plot on left] and gZ 2 and 2.5 [plot on right]. The
subscript of l indicates the corresponding network scaling exponent g.
is achieved by infecting high-connectivity nodes,
in agreement with intuition. However, if a steady
state condition applies (i.e., lm ln(kmax/m)O 1),
the infection probability is independent of the
connectivity of originally targeted nodes. We also
confirmed that adjusting the infection growth and
decay rates induces the probability of node in-
fection to change maximally for the highest con-
nectivity nodes.

In Fig. 3 below, the threshold l is plotted against
the connectivity kmax of the network for various
scaling exponents g. It is interesting to note that:

� the larger the network, the lower the threshold
value of l,

� the larger the exponent g for a distribution
P(k), the higher the allowable value of l.

Network security implications

The results herein suggest alternative approaches
to network organization and surveillance in order
to enhance security. Networks have traditionally
been organized into subnets based on differences
in functionality or user groups, rather than accord-
ing to topological features. However, the confir-
mation of the existence of a threshold for infection
persistence has significant implications, since any
actions that contribute to remaining below that
threshold decrease the vulnerability to infection
spreading.

First, it is clear that priority quarantining and
patching of high-connectivity nodes is mandated.
These results as well as the results of others
(Albert et al., 2000; Ebel et al., 2002; Pastor-
Satorras and Vespignani, 2001) argue strongly for
preferentially monitoring these specific nodes for
infections. This strategy is consistent with pub-
lished recommendations for defending against
self-propagating code such as Code-Red (Moore
et al., 2003, 2002). Quick intervention and re-
mediation of high-connectivity nodes will increase
the virus incubation time by decreasing the value
of l, m, and kmax which appear in the denominator
of the expression for the time-to-persistence.

There has been considerable documentation of
modes of infection spreading. These typically
involve variations on a similar theme, where
viruses self-replicate and then distribute them-
selves to address book entries, MAPI mailboxes or
some other means of E-mail-based distribution.
Examples of such viruses include Nimda, SoBig-A,
and variants of Melissa (Information World Review,
2001, 2003, 1999). Furthermore, in at least one
case it has been explicitly demonstrated by direct
measurement that a seemingly typical E-mail
network obeyed a scale-free distribution with
gZ 1.81 (Ebel et al., 2002). The continued exploi-
tation of E-mail as a means of virus transmission
coupled with the prevalence of contact and/or
address lists creates a ready means of directed
attacks.

We are not aware of an automated method of
examining server logs in order to determine the
changing hierarchy of node connectivity, and
thereby monitor the risk of infection in a targeted
fashion. In lieu of this capability, the number
of entries in network users’ contact lists might
be considered to identify the high-connectivity
nodes. It is not unreasonable to assume that the
number of entries in contact lists follows a scale-
free distribution across the network community
and might mirror the distribution data containing
in the server logs. Future security products might
include those that identify and monitor high-
connectivity network nodes in real time.

In view of the direct dependence on the
number of available nodes for connection kmax by
the persistence threshold value, segmenting the
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network into a hierarchy according to the number
of nodes would appear to be advantageous. In that
vein, one might envision a pyramid-shaped net-
work topology, such that the segment with the
lowest population has a single node. In some sense
this implies a re-examination of the fundamental
notion of a node, where each segment consisting
of a varying number of nodes might be considered
a node unto itself.

Finally, and for what is believed to be the first
time, a true security metric can be explicitly
communicated based on these results. This metric
will enable network administrators to sample their
environment and actually measure the exposure to
risk relative to E-mail-borne viruses in real time.
Specifically, these results suggest the creation of
a security figure-of-merit

SZD1=ðD2lÞ ð11Þ

where Di represents the ith moment of the
connectivity probability distribution P(k), and as
before lZ y/d is the ratio of infection growth-to-
decay rates.

Larger values of S imply an enhanced defense
relative to the susceptibility to computer virus
infection. In particular, a value of SZ 1 represents
the threshold condition for viral persistence once
the virus has been introduced into the network.
Such a metric may offer opportunities for the
development of security software designed to
measure, report, and alert on the value of S as
the network connectivity evolves with time.
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